◀ ▲ ▶Branches / Combinatorics / Proposition: Recursively Defined Arithmetic Functions, Recursion
Proposition: Recursively Defined Arithmetic Functions, Recursion
An arithmetic function f:\mathbb N\to\mathbb C can be defined by specifying
1. the initial values of f(m) for all m\le N and some natural number N\in\mathbb N, and
1. the recursion formula f(n)=\mathcal R(f(m)\mid m < n) for all n > N.
Examples
- factorial function f:\mathbb N\to\mathbb N:
- N:=0,
- initial value f(0):=1,
- recursion formula f(n):=n\cdot f(n-1).
- Fibonacci function f:\mathbb N\to\mathbb N:
- N:=2,
- initial values f(0):=0, f(1):=1, f(2):=1,
- recursion formula f(n):=f(n-1)+f(n+2).
- Mandelbrot function f:\mathbb N\to\mathbb C:
- N:=0,
- initial value f(0):=0,
- recursion formula f(n):=f(n-1)^2+c for some complex number c\in\mathbb C.
Table of Contents
Proofs: 1
Mentioned in:
Definitions: 1
Propositions: 2
Thank you to the contributors under CC BY-SA 4.0!

- Github:
-

References
Bibliography
- Aigner, Martin: "Diskrete Mathematik", vieweg studium, 1993