Proposition: Recursively Defined Arithmetic Functions, Recursion

An arithmetic function $f:\mathbb N\to\mathbb C$ can be defined by specifying 1. the initial values of $f(m)$ for all $m\le N$ and some natural number $N\in\mathbb N,$ and 1. the recursion formula $f(n)=\mathcal R(f(m)\mid m < n)$ for all $n > N.$

Examples

Proofs: 1

Definitions: 1
Propositions: 2


Thank you to the contributors under CC BY-SA 4.0!

Github:
bookofproofs


References

Bibliography

  1. Aigner, Martin: "Diskrete Mathematik", vieweg studium, 1993