◀ ▲ ▶Branches / Combinatorics / Proposition: Recursively Defined Arithmetic Functions, Recursion
Proposition: Recursively Defined Arithmetic Functions, Recursion
An arithmetic function $f:\mathbb N\to\mathbb C$ can be defined by specifying
1. the initial values of $f(m)$ for all $m\le N$ and some natural number $N\in\mathbb N,$ and
1. the recursion formula $f(n)=\mathcal R(f(m)\mid m < n)$ for all $n > N.$
Examples
- factorial function $f:\mathbb N\to\mathbb N:$
- $N:=0,$
- initial value $f(0):=1,$
- recursion formula $f(n):=n\cdot f(n-1).$
- Fibonacci function $f:\mathbb N\to\mathbb N:$
- $N:=2,$
- initial values $f(0):=0, f(1):=1, f(2):=1,$
- recursion formula $f(n):=f(n-1)+f(n+2).$
- Mandelbrot function $f:\mathbb N\to\mathbb C:$
- $N:=0,$
- initial value $f(0):=0,$
- recursion formula $f(n):=f(n-1)^2+c$ for some complex number $c\in\mathbb C.$
Table of Contents
Proofs: 1
Mentioned in:
Definitions: 1
Propositions: 2
Thank you to the contributors under CC BY-SA 4.0!
- Github:
-
References
Bibliography
- Aigner, Martin: "Diskrete Mathematik", vieweg studium, 1993