# Problem: The Cigar Puzzle

I once propounded the following puzzle in a London club, and for a considerable period, it absorbed the attention of the members. They could make nothing of it and considered it quite impossible of solution. And yet, as I shall show, the answer is remarkably simple.

Two men are seated at a square-topped table. One places an ordinary cigar (flat at one end, pointed at the other) on the table, then the other does the same, and so on alternately, a condition being that no cigar shall touch another. Which player should succeed in placing the last cigar, assuming that they each will play in the best possible manner? The size of the table top and the size of the cigar are not given, but in order to exclude the ridiculous answer that the table might be so diminutive as only to take one cigar, we will say that the table must not be less than $2$ feet square and the cigar not more than $4\frac 12$ inches long. With those restrictions, you may take any dimensions you like. Of course, we assume that all the cigars are exactly alike in every respect. Should the first player, or the second player, win?

Solutions: 1

Thank you to the contributors under CC BY-SA 4.0!

Github:

non-Github:
@H-Dudeney

### References

#### Project Gutenberg

1. Dudeney, H. E.: "Amusements in Mathematics", The Authors' Club, 1917

This eBook is for the use of anyone anywhere in the United States and most other parts of the world at no cost and with almost no restrictions whatsoever. You may copy it, give it away or re-use it under the terms of the Project Gutenberg License included with this edition or online at http://www.gutenberg.org. If you are not located in the United States, you'll have to check the laws of the country where you are located before using this ebook.