Definition: Points, Straight Lines, and Planes
Let $\mathcal P$ be an arbitrary non-empty set. The elements $A,B,C\ldots \in \mathcal P$ are called points.
Let $\mathcal L$ be an arbitrary non-empty set. We call the elements $a,b,c \ldots \in \mathcal L$ lines.
Let $\Pi$ be an arbitrary non-empty set. We call the elements $\alpha,\beta,\gamma \ldots \in \Pi$ planes.
Notes
- Points $\mathcal P$ constitute the elements of linear geometry.
- Points $\mathcal P$ and straight lines $\mathcal L$ constitute the elements of plane geometry.
- Points $\mathcal P$, straight lines $\mathcal L$, and planes $\Pi$ constitute the elements of spacial geometry.
Mentioned in:
Axioms: 1 2
Definitions: 3
Proofs: 4 5 6 7
Propositions: 8 9 10 11
Sections: 12
Thank you to the contributors under CC BY-SA 4.0!
- Github:
-
References
Bibliography
- Lee, John M.: "Axiomatic Geometry", AMC, 2013
- Berchtold, Florian: "Geometrie", Springer Spektrum, 2017
- Klotzek, B.: "Geometrie", Studienbücherei, 1971
- Hilbert, David: "Grundlagen der Geometrie", Leipzig, B.G. Teubner, 1903