# Example: Examples of Adjacency Matrices

### A Digraph Example

The following figure shows a digraph $$D$$ with $$6$$ vertices and some edges:

This digraph has the adjacency matrix. $$\begin{array}{cccccccc} & & a & b & c & d & e & f \cr & & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \cr a & \rightarrow & 0 & 1 & 1 & 1 & 0 & 0 \cr b & \rightarrow & 2 & 0 & 0 & 0 & 0 & 0 \cr c & \rightarrow & 0 & 3 & 0 & 0 & 0 & 0 \cr d & \rightarrow & 0 & 0 & 0 & 0 & 2 & 0 \cr e & \rightarrow & 0 & 0 & 0 & 0 & 1 & 0 \cr f & \rightarrow & 0 & 0 & 0 & 0 & 0 & 0 \cr \end{array}$$

Please note that an adjacency matrix of a digraph * is in general not symmetric, * diagonal elements $$\neq 0$$ indicate loops, * elements of $$> 1$$ indicate multiple edges.

### A Graph Example

The figure below demonstrates a similar graph with $$G$$ with $$6$$ vertices and some edges:

The adjacency matrix of this graph is given by

$$\begin{array}{cccccccc} & & a & b & c & d & e & f \cr & & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \cr a & \rightarrow & 0 & 3 & 1 & 1 & 0 & 0 \cr b & \rightarrow & 3 & 0 & 3 & 0 & 0 & 0 \cr c & \rightarrow & 1 & 3 & 0 & 0 & 0 & 0 \cr d & \rightarrow & 1 & 0 & 0 & 0 & 2 & 0 \cr e & \rightarrow & 0 & 0 & 0 & 2 & 1 & 0 \cr f & \rightarrow & 0 & 0 & 0 & 0 & 0 & 0 \cr \end{array}$$

Please note that an adjacency matrix of a graph is * always symmetric, * diagonal elements $$\neq 0$$ indicate loops, * elements of $$> 1$$ indicate multiple edges.

Thank you to the contributors under CC BY-SA 4.0!

Github:

### References

#### Bibliography

1. Krumke S. O., Noltemeier H.: "Graphentheoretische Konzepte und Algorithmen", Teubner, 2005, 1st Edition