Proof
(related to Lemma: A proposition cannot be both, true and false)
$[[x]]_I$ |
$[[\neg x]]_I$ |
$[[x \wedge \neg x]]_I$ |
\(1\) |
\(0\) |
\(0\) |
\(0\) |
\(1\) |
\(0\) |
- It follows that \(x\wedge \neg x\) is a contradiction.
- Thus, $x$ cannot be both, true and false.
∎
Thank you to the contributors under CC BY-SA 4.0!

- Github:
-

References
Bibliography
- Mendelson Elliott: "Theory and Problems of Boolean Algebra and Switching Circuits", McGraw-Hill Book Company, 1982