Definition: Conjunction

Let \(L\) be a set of propositions with the interpretation $I$ and the corresponding valuation function $[[]]_I$. A conjunction "\(\wedge \)" is a Boolean function. \[\wedge :=\begin{cases}L \times L & \mapsto L \\ (x,y) &\mapsto x \wedge y. \end{cases}\]

defined by the following truth table:

Truth Table of the Conjunction :------------- $[[x]]_I$| $[[y]]_I$| $[[x \wedge y]]_I$ \(1\)| \(1\)| \(1\) \(0\)| \(1\)| \(0\) \(1\)| \(0\)| \(0\) \(0\)| \(0\)| \(0\)

We read the conjunction $x\wedge y$

“$x$ and $y$”.

Notes

Corollaries: 1

  1. Proposition: Associativity of Conjunction

Branches: 1
Corollaries: 2 3
Definitions: 4 5 6 7 8 9 10
Examples: 11
Lemmas: 12 13 14 15 16
Parts: 17
Proofs: 18 19 20 21 22 23 24 25 26 27 28 29 30
Propositions: 31


Thank you to the contributors under CC BY-SA 4.0!

Github:
bookofproofs


References

Bibliography

  1. Kohar, Richard: "Basic Discrete Mathematics, Logic, Set Theory & Probability", World Scientific, 2016