Proof
(related to Lemma: A proposition cannot be equivalent to its negation)
$[[x]]_I$ |
$[[\neg x]]_I$ |
$[[x \Leftrightarrow \neg x]]_I$ |
\(1\) |
\(0\) |
\(0\) |
\(0\) |
\(1\) |
\(0\) |
- It follows that \(x\Leftrightarrow \neg x\) is a contradiction.
- Thus, $x$ cannot be equivalent to its negation.
∎
Thank you to the contributors under CC BY-SA 4.0!
- Github:
-
References
Bibliography
- Mendelson Elliott: "Theory and Problems of Boolean Algebra and Switching Circuits", McGraw-Hill Book Company, 1982