One of the most important connectives in logic is the equivalence which is a kind of both-sided implication.

Definition: Equivalence

Let \(L\) be a set of propositions with the interpretation $I$ and the corresponding valuation function $[[]]_I$. An equivalence "\(\Leftrightarrow\)" is a Boolean function. \[\Leftrightarrow:=\begin{cases}L \times L & \mapsto L \\ (x,y) &\mapsto x \Leftrightarrow y\\ \end{cases}\]

defined using a conjunction of two implications:

$$x \Leftrightarrow y :=(x\Rightarrow y)\wedge (y\Rightarrow y).$$

We read the equivalence

"$x$ if, and only if $y$."

It has the following truth table:

semantics:

$[[x]]_I$ $[[y]]_I$ $[[x \Leftrightarrow y]]_I$
\(1\) \(1\) \(1\)
\(0\) \(1\) \(0\)
\(1\) \(0\) \(0\)
\(0\) \(0\) \(1\)

Notes

Corollaries: 1

Branches: 1
Chapters: 2
Corollaries: 3
Examples: 4
Lemmas: 5 6 7 8
Motivations: 9
Parts: 10
Proofs: 11 12 13 14 15 16 17
Propositions: 18


Thank you to the contributors under CC BY-SA 4.0!

Github:
bookofproofs