Proof
(related to Corollary: Algebraic Structure of Strings over an Alphabet)
- Let $\Sigma^*$ be a non-empty set of all strings under the alphabet $\Sigma$.
- Let a concatenation be defined as its binary operation $\cdot: \Sigma^* \times \Sigma^* \mapsto \Sigma^*$.
- The concatenation is associative, i.e. for any letters $x,y,z\in \Sigma^*$ we have that $x(yz)=(xy)z$.
- Moreover, the empty string $\epsilon\in \Sigma^*$ is neutral with respect to concatenation.
- Therefore, \((\Sigma^*,\cdot)\) fulfills all axioms of a monoid.
∎
Thank you to the contributors under CC BY-SA 4.0!

- Github:
-

References
Bibliography
- Knauer Ulrich: "Diskrete Strukturen - kurz gefasst", Spektrum Akademischer Verlag, 2001