Definition: Language

Let $(\Sigma^*,\cdot)$ be the set of all strings over an alphabet $\Sigma$ with the concatenation operation "$\cdot$". Any non-empty subset \(L\subseteq (\Sigma^*,\cdot)\) is called a language over the alphabet \(\Sigma \).

Examples: 1

  1. Definition: Concatenation of Languages
  2. Definition: Iteration of Languages, Kleene Star, Kleene Plus

Applications: 1
Branches: 2
Chapters: 3 4 5
Corollaries: 6
Definitions: 7 8 9 10
Examples: 11
Theorems: 12 13


Thank you to the contributors under CC BY-SA 4.0!

Github:
bookofproofs