◀ ▲ ▶Branches / Logic / Corollary: Commutativity of Equivalence
Corollary: Commutativity of Equivalence
(related to Definition: Equivalence)
The equivalence operation "$\Leftrightarrow$" is commutative,
i.e. $x \Leftrightarrow y=y \Leftrightarrow x$ for all possible interpretations $I$
and valuation functions $[[]]_I$ of propositions \(x,y.\).
Table of Contents
Proofs: 1
Thank you to the contributors under CC BY-SA 4.0!

- Github:
-

References
Bibliography
- Mendelson Elliott: "Theory and Problems of Boolean Algebra and Switching Circuits", McGraw-Hill Book Company, 1982