Proof
(related to Lemma: Implication as a Disjunction)
Context
- Let $x,y$ be two propositions.
- We want to show that $(x\Rightarrow y)\Longleftrightarrow (\neg x \vee y).$
Hypothesis
- We are given the implication $x\Rightarrow y$.
Implications
\(\models(x)\) |
\(\models(y)\) |
\(\models(x \Rightarrow y)\) |
\(1\) |
\(1\) |
\(1\) |
\(0\) |
\(1\) |
\(1\) |
\(1\) |
\(0\) |
\(0\) |
\(0\) |
\(0\) |
\(1\) |
- Based on the truth tables of the negation and disjunction, the truth table of $(\neg x\vee y)$ is given by
\(\models(x)\)| \(\models(y)\)| \(\models(\neg x) \)| \(\models(\neg x \vee y)\)
\(1\)| \(1\)| \(0\)| \(1\)
\(0\)| \(1\)| \(1\)| \(1\)
\(1\)| \(0\)| \(0\)| \(0\)
\(0\)| \(0\)| \(1\)| \(1\)
Conclusion
- Since the outcomes (columns to the right) of both truth tables are equal, we have shown the equivalence $(x\Rightarrow y)\Longleftrightarrow (\neg x \vee y).$
∎
Thank you to the contributors under CC BY-SA 4.0!
- Github:
-
References
Bibliography
- Mendelson Elliott: "Theory and Problems of Boolean Algebra and Switching Circuits", McGraw-Hill Book Company, 1982