Proof

(related to Lemma: Implication as a Disjunction)

Context

Hypothesis

Implications

\(\models(x)\) \(\models(y)\) \(\models(x \Rightarrow y)\)
\(1\) \(1\) \(1\)
\(0\) \(1\) \(1\)
\(1\) \(0\) \(0\)
\(0\) \(0\) \(1\)

\(\models(x)\)| \(\models(y)\)| \(\models(\neg x) \)| \(\models(\neg x \vee y)\) \(1\)| \(1\)| \(0\)| \(1\) \(0\)| \(1\)| \(1\)| \(1\) \(1\)| \(0\)| \(0\)| \(0\) \(0\)| \(0\)| \(1\)| \(1\)

Conclusion


Thank you to the contributors under CC BY-SA 4.0!

Github:
bookofproofs


References

Bibliography

  1. Mendelson Elliott: "Theory and Problems of Boolean Algebra and Switching Circuits", McGraw-Hill Book Company, 1982