◀ ▲ ▶Branches / Logic / Lemma: Unique Valuation of Minterms and Maxterms
Lemma: Unique Valuation of Minterms and Maxterms
Let $x_1,\ldots,x_n$ be Boolean variables.
* If $m=(\neg)x_1\wedge\ldots\wedge(\neg)x_n$ is a minterm, then there is exactly one $n$-tuple of truth values assigned to $x_1,\ldots,x_n$, for which $m$ is true.
* If $M=(\neg)x_1\vee\ldots\vee(\neg)x_n$ is a maxterm, then there is exactly one $n$-tuple of truth values assigned to $x_1,\ldots,x_n$, for which $M$ ís false.
Table of Contents
Proofs: 1
Mentioned in:
Proofs: 1
Thank you to the contributors under CC BY-SA 4.0!

- Github:
-

References
Bibliography
- Mendelson Elliott: "Theory and Problems of Boolean Algebra and Switching Circuits", McGraw-Hill Book Company, 1982
- Hoffmann, Dirk: "Theoretische Informatik, 3. Auflage", Hanser, 2015