Lemma: Unique Valuation of Minterms and Maxterms

Let $x_1,\ldots,x_n$ be Boolean variables. * If $m=(\neg)x_1\wedge\ldots\wedge(\neg)x_n$ is a minterm, then there is exactly one $n$-tuple of truth values assigned to $x_1,\ldots,x_n$, for which $m$ is true. * If $M=(\neg)x_1\vee\ldots\vee(\neg)x_n$ is a maxterm, then there is exactly one $n$-tuple of truth values assigned to $x_1,\ldots,x_n$, for which $M$ ís false.

Proofs: 1

Proofs: 1


Thank you to the contributors under CC BY-SA 4.0!

Github:
bookofproofs


References

Bibliography

  1. Mendelson Elliott: "Theory and Problems of Boolean Algebra and Switching Circuits", McGraw-Hill Book Company, 1982
  2. Hoffmann, Dirk: "Theoretische Informatik, 3. Auflage", Hanser, 2015