◀ ▲ ▶Branches / Number-systems-arithmetics / Proposition: Algebraic Structure of Non-Zero Rational Numbers Together with Multiplication
Proposition: Algebraic Structure of Non-Zero Rational Numbers Together with Multiplication
Let \(\mathbb Q^*\) be the set of rational numbers with the number zero being excluded, formally \(\mathbb Q^*:=\mathbb Q\setminus\{0\}\). Together with the specific multiplication operation "\(\cdot\)", it forms the algebraic structure \((\mathbb Q^*, \cdot)\) of a commutative group.
Table of Contents
Proofs: 1
Mentioned in:
Proofs: 1
Thank you to the contributors under CC BY-SA 4.0!

- Github:
-

References
Bibliography
- Kramer Jürg, von Pippich, Anna-Maria: "Von den natürlichen Zahlen zu den Quaternionen", Springer-Spektrum, 2013