Proof
(related to Proposition: Algebraic Structure of Real Numbers Together with Addition)
The set of real numbers \(\mathbb R\), together with the specific addition operation
"\(+\)" is a commutative group, because:
- The addition operation is associative, i.e. \((x+y)+z=x+(y+z)\) is valid for all \(x,y,z\in\mathbb R\).
- We have shown the existence of a neutral element of addition - the number \(0\in\mathbb R\), i.e. such that \(0+x=x\) for all \(x\in\mathbb R\).
- For every \(x\in\mathbb R\), there there exists an inverse real number \(-x\in\mathbb R\), such that \(x+(-x)=0\).
- For every \(x\in\mathbb R\), there there exists an inverse real number \(-x\in\mathbb R\), such that \(x+(-x)=0\).
∎
Thank you to the contributors under CC BY-SA 4.0!
- Github:
-
References
Bibliography
- Forster Otto: "Analysis 1, Differential- und Integralrechnung einer Veränderlichen", Vieweg Studium, 1983
- Kramer Jürg, von Pippich, Anna-Maria: "Von den natürlichen Zahlen zu den Quaternionen", Springer-Spektrum, 2013