Proposition: Existence of Inverse Real Numbers With Respect to Addition

For every real number \(x\in\mathbb R\), there exists an inverse real number \(-x\in\mathbb R\) such that the sum of both numbers equals the real zero:

\[x+(-x)=0.\]

Proofs: 1

Definitions: 1
Proofs: 2 3 4 5 6 7 8 9 10 11


Thank you to the contributors under CC BY-SA 4.0!

Github:
bookofproofs


References

Bibliography

  1. Kramer Jürg, von Pippich, Anna-Maria: "Von den natürlichen Zahlen zu den Quaternionen", Springer-Spektrum, 2013