# Proposition: Complex Numbers as a Vector Space Over the Field of Real Numbers

Since the real numbers together with addition and multiplication form a field ($$\mathbb R,+,\cdot)$$ and the complex numbers form a non-empty set, we can define the maps

$\cases{ \mathbb C\times \mathbb C\mapsto \mathbb C:x,y\mapsto x + y:=(a+c,b+d) & \text{(the vector addition)}\\ \mathbb R\times \mathbb C\mapsto \mathbb C:\alpha,x\mapsto \alpha \cdot x:=(\alpha \cdot a,\alpha \cdot b) & \text{(the scalar multiplication)} }$

for any real number $$\alpha\in\mathbb R$$ and any complex numbers $$x,y\in\mathbb C$$, identified by some ordered pairs of real numbers $$x:=(a,b)$$, $$y:=(c,d)$$, $$a,b,c,d\in\mathbb R$$. Therefore, we can consider the complex numbers $$\mathbb C$$ as a vector space over the field $$\mathbb R$$.

Proofs: 1

Lemmas: 1 2
Proofs: 3 4

Thank you to the contributors under CC BY-SA 4.0!

Github:

### References

#### Bibliography

1. Wille, D; Holz, M: "Repetitorium der Linearen Algebra", Binomi Verlag, 1994