◀ ▲ ▶Branches / Number-systems-arithmetics / Proposition: Contraposition of Cancellative Law for Multiplying Natural Numbers
Proposition: Contraposition of Cancellative Law for Multiplying Natural Numbers
If any two natural numbers \(x,y\) are unequal, then the inequality is preserved if and only if we multiply both sides of the inequality by an arbitrary natural number \(z\neq 0\):\[x \neq y\Longleftrightarrow \begin{cases} z \cdot x\neq z \cdot y,&\text{or}\\
x \cdot z\neq y \cdot z.
\end{cases}\]
Table of Contents
Proofs: 1
Thank you to the contributors under CC BY-SA 4.0!
- Github:
-
References
Bibliography
- Landau, Edmund: "Grundlagen der Analysis", Heldermann Verlag, 2008