◀ ▲ ▶Branches / Number-systems-arithmetics / Proposition: Contraposition of Cancellative Law for Multiplying Rational Numbers
Proposition: Contraposition of Cancellative Law for Multiplying Rational Numbers
If any two rational numbers \(x,y\) are unequal, then the inequality is preserved, if and only if we multiply both sides of the inequality by an arbitrary rational number \(z\neq 0\):\[x \neq y\Longleftrightarrow \begin{cases} z \cdot x\neq z \cdot y\\
x \cdot z\neq y \cdot z.
\end{cases}\]
Table of Contents
Proofs: 1
Thank you to the contributors under CC BY-SA 4.0!
- Github:
-
References
Bibliography
- Landau, Edmund: "Grundlagen der Analysis", Heldermann Verlag, 2008