Proof
(related to Proposition: Multiplication Of Rational Numbers Is Cancellative)
- Assume the equation \(x\cdot z=y\cdot z\) holds and that \(z\neq 0\).
- By definition of rational numbers, each rational number $x,y,z\in\mathbb Q$ is an equivalence class of ordered pairs of some integers \(a,b,c,d,e,f\in\mathbb Z\), with \(b\neq 0,d\neq 0,f\neq 0\) and $x=\frac ab,$ $y=\frac cd,$ and $z=\frac ef.$
- It follows by definition of multiplying rational numbers $$x\cdot z=y\cdot z \Leftrightarrow \frac {ae}{bf}=\frac {ce}{df}.$$
- Again, by definition of rational numbers $$\Leftrightarrow (ae)(df)=(ce)(bf).$$
- By associativity law for multiplying integers $$\Leftrightarrow aedf=cebf.$$
- By commutativity law for multiplying integers $$\Leftrightarrow adef=cbef.$$
- By cancellation law for multiplying integers, where $ef\neq 0$, since $z\neq 0$, by hypothesis, $$\Leftrightarrow ad=cb.$$
- By definition of rational numbers $$\Leftrightarrow \frac ab=\frac cd\Leftrightarrow x=y.$$
- The above arguments show the right cancellation property.
- Because the multiplication of rational numbers is commutative, the left cancellation property follows immediately.
- Altogether, we have shown that the multiplication of rational numbers is cancellative: $$x\cdot z=y\cdot z\Longleftrightarrow x=y,$$ for all $x,y,z\in\mathbb Q$ with $z\neq 0.$
∎
Thank you to the contributors under CC BY-SA 4.0!
- Github:
-
References
Bibliography
- Kramer Jürg, von Pippich, Anna-Maria: "Von den natürlichen Zahlen zu den Quaternionen", Springer-Spektrum, 2013
Footnotes