Proposition: Distributivity Law for Complex Numbers

For arbitrary complex numbers \(x,y,z\in\mathbb C\) with the binary operations addition "\( + \)" and multiplication "\(\cdot\)", the following distributivity laws hold:

\[\begin{array}{ccl} x\cdot(y+z)&=&(x\cdot y)+(x\cdot z).\quad\quad\text{"left-distributivity property"}\\ (y+z)\cdot x&=&(y\cdot x)+(z\cdot x)\quad\quad\text{"right-distributivity property"},\\ \end{array}\]

Proofs: 1

Proofs: 1


Thank you to the contributors under CC BY-SA 4.0!

Github:
bookofproofs


References

Bibliography

  1. Forster Otto: "Analysis 1, Differential- und Integralrechnung einer Veränderlichen", Vieweg Studium, 1983