Proof
(related to Proposition: Oddness of the Sine of a Real Variable)
- By hypothesis, $x\in\mathbb R$ is a real number. It follows:
- $\sin(-x)=\frac 1{2i}(\exp(i(-x))-\exp(-i(-x)),$ representing real sine by the complex exponential function,
- $=\frac 1{2i}(\exp((-x) i)-\exp((-1)(-x)i),$ by commutativity of multiplying complex numbers,
- $=\frac 1{2i}(\exp(-ix)-\exp(ix)),$ by rules of multiplying positive and negative real numbers,
- $=\frac 1{2i}(-\exp(ix)+\exp(-ix)),$ by commutativity of adding complex numbers,
- $=\frac 1{2i}((-1)(\exp(ix)-\exp(-ix))),$ by distributivity law for complex numbers,
- $=- \frac 1{2i}(\exp(ix)-\exp(-ix))$
- $=-\sin(x),$ once again applying representing of real sine by the complex exponential function.
- Thus, the sine of a real variable is an odd function.
∎
Thank you to the contributors under CC BY-SA 4.0!
- Github:
-
References
Bibliography
- Forster Otto: "Analysis 1, Differential- und Integralrechnung einer Veränderlichen", Vieweg Studium, 1983