Proof: By Induction
(related to Proposition: Distributivity Law For Natural Numbers)
- For \(n,m,p\in\mathbb N\) we will first prove the "right-distributivity law" \((n+m)\cdot p=(n\cdot p)+(m\cdot p)\). The validity of the "left-distributivity law" \(p\cdot(n+m)=(p\cdot n)+(p\cdot m)\) then follows from the commutativity of the multiplication of natural numbers.
- Let \(n,m,p\in\mathbb N\) be arbitrary natural numbers.
- Considering the introduced binary operations on natural numbers addition "\( + \)" and multiplication "\(\cdot\)", we will prove the right-distributivity law $(n+m)\cdot p=(n\cdot p)+(m\cdot p)$ by induction over \(p\in\mathbb N\).
Base Case \(p=0\).
- For $p=0$, $(n+m)\cdot 0=0=0+0=(n\cdot 0 + m\cdot 0).$
Induction step \(p\mapsto p^+:= p + 1\).
- Let the rule \((n+m)\cdot p=(n\cdot p + m\cdot p)\) be proven for all \(p\ge 0\).
- According to the definition of multiplication of natural numbers we have $$(n+m)\cdot p^+:=(n+m)\cdot p + (n+m).\quad\quad( * )$$
- On the other hand, it follows from the commutativity of the addition of natural numbers that
$$\begin{array}{ccl}
(n\cdot p^+ + m\cdot p^+)&=&n\cdot p + n + m\cdot p + m\\
&=&n\cdot p + m\cdot p + n + m,\end{array}$$
which equals \( ( * ) \), by hypothesis.
- It follows that $(n+m)\cdot p^+=(n\cdot p^+ + m\cdot p^+).$
∎
Thank you to the contributors under CC BY-SA 4.0!
- Github:
-
References
Bibliography
- Kramer Jürg, von Pippich, Anna-Maria: "Von den natürlichen Zahlen zu den Quaternionen", Springer-Spektrum, 2013