◀ ▲ ▶Branches / Number-systems-arithmetics / Proposition: Existence of Integer One (Neutral Element of Multiplication of Integers)
Proposition: Existence of Integer One (Neutral Element of Multiplication of Integers)
There exists an integer \(1\in\mathbb Z\) such that \[x\cdot 1=1\cdot x=x\] for all \(x\in\mathbb Z\), i.e. \(1\) is neutral with respect to the multiplication or integers.
Table of Contents
Proofs: 1
Mentioned in:
Definitions: 1
Proofs: 2 3 4 5 6
Propositions: 7
Thank you to the contributors under CC BY-SA 4.0!
- Github:
-
References
Bibliography
- Kramer Jürg, von Pippich, Anna-Maria: "Von den natürlichen Zahlen zu den Quaternionen", Springer-Spektrum, 2013