Proposition: Existence of Integer One (Neutral Element of Multiplication of Integers)

There exists an integer \(1\in\mathbb Z\) such that \[x\cdot 1=1\cdot x=x\] for all \(x\in\mathbb Z\), i.e. \(1\) is neutral with respect to the multiplication or integers.

Proofs: 1

Definitions: 1
Proofs: 2 3 4 5 6
Propositions: 7


Thank you to the contributors under CC BY-SA 4.0!

Github:
bookofproofs


References

Bibliography

  1. Kramer Jürg, von Pippich, Anna-Maria: "Von den natürlichen Zahlen zu den Quaternionen", Springer-Spektrum, 2013