Proposition: Existence of Inverse Rational Numbers With Respect to Addition

For every rational number \(x\in\mathbb Q\) there exists an inverse rational number \(-x\in\mathbb Q\) such that the sum of both numbers equals the rational zero:

\[x+(-x)=0.\]

Proofs: 1

  1. Proposition: Position of Minus Sign in Rational Numbers Representations

Definitions: 1
Proofs: 2 3 4


Thank you to the contributors under CC BY-SA 4.0!

Github:
bookofproofs


References

Bibliography

  1. Kramer Jürg, von Pippich, Anna-Maria: "Von den natürlichen Zahlen zu den Quaternionen", Springer-Spektrum, 2013