◀ ▲ ▶Branches / Number-systems-arithmetics / Proposition: Existence of Rational Cauchy Sequence of Zeros (Neutral Element of Addition of Rational Cauchy Sequences)
Proposition: Existence of Rational Cauchy Sequence of Zeros (Neutral Element of Addition of Rational Cauchy Sequences)
There exists a rational Cauchy sequence \((0)_{n\in\mathbb N}\) such that \[(x_n)_{n\in\mathbb N} + (0)_{n\in\mathbb N}= (0)_{n\in\mathbb N} + (x_n)_{n\in\mathbb N}=(x_n)_{n\in\mathbb N}\] for all rational Cauchy sequence \((x_n)_{n\in\mathbb N}\), i.e. \((0)_{n\in\mathbb N}\) is neutral with respect to the addition of rational Cauchy sequences.
Table of Contents
Proofs: 1
Mentioned in:
Proofs: 1 2 3 4
Propositions: 5 6
Thank you to the contributors under CC BY-SA 4.0!
- Github:
-
References
Bibliography
- Kramer Jürg, von Pippich, Anna-Maria: "Von den natürlichen Zahlen zu den Quaternionen", Springer-Spektrum, 2013