\[\begin{array}{ccll} (x_n)_{n\in\mathbb N}\cdot (1)_{n\in\mathbb N}&=&(x_n\cdot 1)_{n\in\mathbb N}&\text{by definition of multiplying rational Cauchy sequences}\\ &=&(x_n)_{n\in\mathbb N}&\text{because }1\text{ is neutral with respect to the multiplication of rational numbers}\\ \end{array}\] * From the commutativity of multiplying rational Cauchy sequences, it follows that also the equation \((1)_{n\in\mathbb N}\cdot (x_n)_{n\in\mathbb N}=(x_n)_{n\in\mathbb N}\) holds for all rational Cauchy sequences \((x_n)_{n\in\mathbb N}\).