Proof

(related to Proposition: Existence of Rational Cauchy Sequence of Ones (Neutral Element of Multiplication of Rational Cauchy Sequences))

\[\begin{array}{ccll} (x_n)_{n\in\mathbb N}\cdot (1)_{n\in\mathbb N}&=&(x_n\cdot 1)_{n\in\mathbb N}&\text{by definition of multiplying rational Cauchy sequences}\\ &=&(x_n)_{n\in\mathbb N}&\text{because }1\text{ is neutral with respect to the multiplication of rational numbers}\\ \end{array}\] * From the commutativity of multiplying rational Cauchy sequences, it follows that also the equation \((1)_{n\in\mathbb N}\cdot (x_n)_{n\in\mathbb N}=(x_n)_{n\in\mathbb N}\) holds for all rational Cauchy sequences \((x_n)_{n\in\mathbb N}\).


Thank you to the contributors under CC BY-SA 4.0!

Github:
bookofproofs


References

Bibliography

  1. Kramer Jürg, von Pippich, Anna-Maria: "Von den natürlichen Zahlen zu den Quaternionen", Springer-Spektrum, 2013