Proposition: Existence of Rational Cauchy Sequence of Ones (Neutral Element of Multiplication of Rational Cauchy Sequences)

There exists a rational Cauchy sequence \((1)_{n\in\mathbb N}\) such that \[(x_n)_{n\in\mathbb N} \cdot (1)_{n\in\mathbb N}= (1)_{n\in\mathbb N}\cdot (x_n)_{n\in\mathbb N}=(x_n)_{n\in\mathbb N}\] for all rational Cauchy sequence \((x_n)_{n\in\mathbb N}\), i.e. \((1)_{n\in\mathbb N}\) is neutral with respect to the multiplication of rational Cauchy sequences.

Proofs: 1

Proofs: 1 2


Thank you to the contributors under CC BY-SA 4.0!

Github:
bookofproofs


References

Bibliography

  1. Kramer Jürg, von Pippich, Anna-Maria: "Von den natürlichen Zahlen zu den Quaternionen", Springer-Spektrum, 2013