Proof
(related to Proposition: Multiplication of Complex Numbers Is Commutative)
- $x\cdot y:=(a,b) \cdot (c,d)$ by definition of complex numbers, the complex numbers \(x,y \in \mathbb C\) are identified by pairs \(x:=(a,b)\), \(y:=(c,d)\) of real numbers \(a,b,c,d\in\mathbb R\).
- $=(ac - bd,~ ad + bc)$ by definition of complex multiplication.
- $=(ca - db,~ da + cb)$ because multiplying real numbers is commutative.
- $=(ca - db,~ cb +da)$ because adding real numbers is commutative.
- $= (c,d)\cdot (a,b)$ by definition of complex multiplication.
- $= y \cdot x$ by definition of complex numbers.
- Therefore, the multiplication of complex numbers is commutative.
∎
Thank you to the contributors under CC BY-SA 4.0!
- Github:
-
References
Bibliography
- Forster Otto: "Analysis 1, Differential- und Integralrechnung einer Veränderlichen", Vieweg Studium, 1983