◀ ▲ ▶Branches / Number-systems-arithmetics / Proposition: Existence of Complex One (Neutral Element of Multiplication of Complex Numbers)
Proposition: Existence of Complex One (Neutral Element of Multiplication of Complex Numbers)
There exists a complex number \(1\in\mathbb C\) such that \[x\cdot 1=1\cdot x=x\] for all \(x\in\mathbb C\), i.e. \(1\) is neutral with respect to the multiplication or complex numbers.
Table of Contents
Proofs: 1
Mentioned in:
Lemmas: 1 2
Proofs: 3 4 5 6
Thank you to the contributors under CC BY-SA 4.0!

- Github:
-

References
Bibliography
- Forster Otto: "Analysis 1, Differential- und Integralrechnung einer Veränderlichen", Vieweg Studium, 1983