Proposition: Existence of Complex One (Neutral Element of Multiplication of Complex Numbers)

There exists a complex number \(1\in\mathbb C\) such that \[x\cdot 1=1\cdot x=x\] for all \(x\in\mathbb C\), i.e. \(1\) is neutral with respect to the multiplication or complex numbers.

Proofs: 1

Lemmas: 1 2
Proofs: 3 4 5 6


Thank you to the contributors under CC BY-SA 4.0!

Github:
bookofproofs


References

Bibliography

  1. Forster Otto: "Analysis 1, Differential- und Integralrechnung einer Veränderlichen", Vieweg Studium, 1983