Proof

(related to Proposition: Multiplication of Complex Numbers Using Polar Coordinates)

$$\begin{array}{rcl}z\cdot w&=&r\exp(i\phi)\cdot s\exp(i\psi)\\ &=&r(\cos(\phi)+i\sin(\phi))\cdot s(\cos(\psi)+i\sin(\psi))\\ &=& (r\cdot s)\cdot [\cos(\phi)\cdot\cos(\psi)+i\sin(\phi)\cdot\sin(\psi) + i\sin(\psi)\cos(\phi)-\sin(\phi)\sin(\psi)]\\ &=& (r\cdot s)\cdot [\cos(\phi+\psi)+i\sin(\phi+\psi)]. \end{array}$$


Thank you to the contributors under CC BY-SA 4.0!

Github:
bookofproofs


References

Bibliography

  1. Modler, F.; Kreh, M.: "Tutorium Analysis 1 und Lineare Algebra 1", Springer Spektrum, 2018, 4th Edition