Proposition: Additivity Theorems of Cosine and Sine

For the cosine and sine functions, the following additivity theorems hold for all real numbers $x,y\in\mathbb R$:

$$\begin{array}{rcl}\cos(x+y)&=&\cos(x)\cos(y)-\sin(x)\sin(y),\\\sin(x+y)&=&\sin(x)\cos(y)+\cos(x)\sin(y).\end{array}$$

Proofs: 1

Examples: 1
Proofs: 2 3


Thank you to the contributors under CC BY-SA 4.0!

Github:
bookofproofs


References

Bibliography

  1. Forster Otto: "Analysis 1, Differential- und Integralrechnung einer Veränderlichen", Vieweg Studium, 1983