◀ ▲ ▶Branches / Analysis / Proposition: Additivity Theorems of Cosine and Sine
Proposition: Additivity Theorems of Cosine and Sine
For the cosine and sine functions, the following additivity theorems hold for all real numbers $x,y\in\mathbb R$:
$$\begin{array}{rcl}\cos(x+y)&=&\cos(x)\cos(y)-\sin(x)\sin(y),\\\sin(x+y)&=&\sin(x)\cos(y)+\cos(x)\sin(y).\end{array}$$
Table of Contents
Proofs: 1
Mentioned in:
Examples: 1
Proofs: 2 3
Thank you to the contributors under CC BY-SA 4.0!

- Github:
-

References
Bibliography
- Forster Otto: "Analysis 1, Differential- und Integralrechnung einer Veränderlichen", Vieweg Studium, 1983