Proposition: Multiplication of Natural Numbers Is Cancellative With Respect to the Order Relation

If a natural number \(x\) is smaller than another natural number \(y\), then the inequality is preserved, if and only if we multiply it by a natural number \(z\neq 0\)1, formally:

\[x < y\Longleftrightarrow \begin{cases} z x < z y&\text{or}\\ x z < y z. \end{cases}\]

The same can be stated about the order relations smaller or greater "\( \le \)", greater or equal "\( \ge \)", and greater "\( > \)":

\[x \le y\Longleftrightarrow \begin{cases} z x\le z y&\text{or}\\ x z\le y z. \end{cases}\]

\[x \ge y\Longleftrightarrow \begin{cases} z x \ge z y&\text{or}\\ x z \ge y z. \end{cases}\]

\[x > y\Longleftrightarrow \begin{cases} z x > z y&\text{or}\\ x z > y z. \end{cases}\]

Proofs: 1


Thank you to the contributors under CC BY-SA 4.0!

Github:
bookofproofs


References

Bibliography

  1. Landau, Edmund: "Grundlagen der Analysis", Heldermann Verlag, 2008

Footnotes


  1. Please note that the proposition would be wrong, if we allowed \(z=0\), e.g. \(3 < 5\), but \(3\cdot 0= 5\cdot 0\).