Proposition: Sum of Cosines

Let \(t\in\mathbb R\) be a real number, which is not a multiple of $2\pi$, where $\pi$ is the Pi constant. Then the following sum of cosines can be calculated using the formula:

$$\sum_{k=1}^n\cos(kt)=\frac{t\sin\left(n+\frac 12\right)}{2\sin\left(\frac t2\right)}-\frac 12.$$

Proofs: 1


Thank you to the contributors under CC BY-SA 4.0!

Github:
bookofproofs


References

Bibliography

  1. Forster Otto: "Analysis 1, Differential- und Integralrechnung einer Veränderlichen", Vieweg Studium, 1983