Proposition: Sum of Cube Numbers

The sum of consecutive cube numbers to a given number $n^3$ can be calculated by the following formula $$\sum_{k=0}^n k^3=\frac{n^2(n+1)^2}4.$$

Proofs: 1


Thank you to the contributors under CC BY-SA 4.0!

Github:
bookofproofs


References

Bibliography

  1. Forster Otto: "Analysis 1, Differential- und Integralrechnung einer Veränderlichen", Vieweg Studium, 1983