Proposition: Sum of Cube Numbers
The sum of consecutive cube numbers to a given number $n^3$ can be calculated by the following formula
$$\sum_{k=0}^n k^3=\frac{n^2(n+1)^2}4.$$
Table of Contents
Proofs: 1
Thank you to the contributors under CC BY-SA 4.0!
- Github:
-
References
Bibliography
- Forster Otto: "Analysis 1, Differential- und Integralrechnung einer Veränderlichen", Vieweg Studium, 1983