Proof

(related to Corollary: The absolute value makes the set of rational numbers a metric space.)

We have to show that the absolute value defined for rational numbers defines a metric on the set of rational numbers \(\mathbb Q\), i.e. to show that it fulfills in \(\mathbb Q\) the general properties of any metric. Let \(\frac ab,~\frac cd,~\frac ef\in \mathbb Q\).

\((1)\) We have to show that \(\left|\frac ab-\frac cd\right|=0\) if and only if \(\frac ab=\frac cd\).

It follows from the definition of rational numbers that \(|\frac ab-\frac cd|=0\) if and only if both fractions represent the same equivalence relation \((a,b)\sim (c,d)\Leftrightarrow ad=bc\), in other words \(\frac ab=\frac cd\). Thus, this property of a metric is fulfilled.

\((2)\) We have to show the symmetry \(|\frac ab-\frac cd|=|\frac cd-\frac ab|\).

Assume without loss of generality that \(\frac ab\ge \frac cd\). Then we have by definition of absolute value for rational numbers that \(\left|\frac ab-\frac cd\right| = \frac ab-\frac cd\). On the other side, we have \(\left|\frac cd-\frac ab\right| = - \frac cd - \left( - \frac ab \right) = - \frac cd + \frac ab \). Since the addition of rational numbers is commutative1, we have \(- \frac cd + \frac ab = \frac ab - \frac cd \), so both absolute values are equal.

\((3)\) We have to show the triangle inequality \(\left|\frac ab-\frac ef\right|\le \left|\frac ab-\frac cd\right|+\left|\frac cd-\frac ef\right|\).

We observe that \(\left(\frac ab-\frac cd\right)\le \left|\frac ab-\frac cd\right|\) and \(\left(\frac cd-\frac ef\right)\le \left|\frac cd-\frac ef\right|\). We have therefore \[\frac ab-\frac ef=\frac ab-\frac cd+\frac cd-\frac ef\le \left|\frac ab-\frac cd\right|+\left|\frac cd-\frac ef\right|.\]

Because also \(-\left(\frac ab-\frac cd\right)\le \left|\frac ab-\frac cd\right|\) and \(-\left(\frac cd-\frac ef\right)\le \left|\frac cd-\frac ef\right|\), it follows with the same argument that

\[-\left(\frac ab - \frac ef\right)=-\left(\frac ab-\frac cd\right)+\left(-\left(\frac cd-\frac ef\right)\right)\le \left|\frac ab-\frac cd\right|+\left|\frac cd-\frac ef\right|.\]

Together with the definition of absolute value for rational numbers, it follows

\[\left|\frac ab-\frac ef\right|\le \left|\frac ab-\frac cd\right|+\left|\frac cd-\frac ef\right|\]


Thank you to the contributors under CC BY-SA 4.0!

Github:
bookofproofs


References

Bibliography

  1. Forster Otto: "Analysis 1, Differential- und Integralrechnung einer Veränderlichen", Vieweg Studium, 1983
  2. Kramer Jürg, von Pippich, Anna-Maria: "Von den natürlichen Zahlen zu den Quaternionen", Springer-Spektrum, 2013

Footnotes


  1. Note that the \((\mathbb Q, + ,\cdot)\) is a field we have constructed from the integral domain \((\mathbb Z, +)\), in which the addition was proven to be commutative.