Proposition: The General Perturbation Method

Let \(n,k\in\mathbb N\) be natural numbers and let \(a_k \in F\) be any elements of a given field \((F, +, \cdot)\).

For a sum \[S_n:=\sum_{0\le k\le n} a_k\] the following property holds:

\[S_n+a_{n+1}=a_0+\sum_{0\le k\le n} a_{k+1}.\]

Proofs: 1

Proofs: 1


Thank you to the contributors under CC BY-SA 4.0!

Github:
bookofproofs


References

Bibliography

  1. Graham L. Ronald, Knuth E. Donald, Patashnik Oren: "Concrete Mathematics", Addison-Wesley, 1994, 2nd Edition