Proposition: The General Perturbation Method
Let \(n,k\in\mathbb N\) be natural numbers and let \(a_k \in F\) be any elements of a given field \((F, +, \cdot)\).
For a sum \[S_n:=\sum_{0\le k\le n} a_k\] the following property holds:
\[S_n+a_{n+1}=a_0+\sum_{0\le k\le n} a_{k+1}.\]
Table of Contents
Proofs: 1
Mentioned in:
Proofs: 1
Thank you to the contributors under CC BY-SA 4.0!

- Github:
-

References
Bibliography
- Graham L. Ronald, Knuth E. Donald, Patashnik Oren: "Concrete Mathematics", Addison-Wesley, 1994, 2nd Edition