◀ ▲ ▶Branches / Number-theory / Proposition: All Solutions Given a Solution of an LDE With Two Variables
Proposition: All Solutions Given a Solution of an LDE With Two Variables
Is the linear Diophantine equation (LDE) $ax+by=c$ solvable according to the existence of solutions of an LDE with more variables, and is the pair of numbers $x_0,y_0$ solving this LDE, then all solutions $x,y$ given by $$x=x_0+h\frac b{\gcd(a,b)},\quad y=y_0-h\frac a{\gcd(a,b)},\quad \forall h\in\mathbb Z.$$
Table of Contents
Proofs: 1
Mentioned in:
Proofs: 1
Thank you to the contributors under CC BY-SA 4.0!

- Github:
-

References
Bibliography
- Landau, Edmund: "Vorlesungen über Zahlentheorie, Aus der Elementaren Zahlentheorie", S. Hirzel, Leipzig, 1927
- Jones G., Jones M.: "Elementary Number Theory (Undergraduate Series)", Springer, 1998