Proposition: Existence of Solutions of an LDE With More Variables

For a given positive integer $m > 0$ and given integers $a_1,\ldots,a_r,b$, the LDE (linear Diophantine equation) with $r$ variables $$a_1x_1+\ldots+a_rx_r=b$$ is solvable, if and only if $\gcd(a_1,\ldots,a_r)\mid b,$ i.e. if and only if the greatest common divisor of the $r$ numbers of $a_1,\ldots,a_r$ is also a divisor of $b.$


Proofs: 1

Proofs: 1 2
Propositions: 3

Thank you to the contributors under CC BY-SA 4.0!




  1. Landau, Edmund: "Vorlesungen ├╝ber Zahlentheorie, Aus der Elementaren Zahlentheorie", S. Hirzel, Leipzig, 1927
  2. Hermann, D.: "Algorithmen Arbeitsbuch", Addison-Wesley Publishing Company, 1992
  3. Jones G., Jones M.: "Elementary Number Theory (Undergraduate Series)", Springer, 1998