◀ ▲ ▶Branches / Number-theory / Proposition: Complete and Reduced Residue Systems (Revised)
Proposition: Complete and Reduced Residue Systems (Revised)
Let $a > 0$ and $b > 0$ be positive integers which are co-prime $a\perp b.$ Then the integer $ax+by$ runs through all values of
- a complete residue system modulo $ab,$ if the integers $x$ (respectively $y$) run through all values of the complete residue systems modulo $a$ (respectively $b,$)
- a reduced residue system modulo $ab,$ if the integers $x$ (respectively $y$) run through all values of the reduced residue systems modulo $a$ (respectively $b.$)
Table of Contents
Proofs: 1
Thank you to the contributors under CC BY-SA 4.0!
- Github:
-
References
Bibliography
- Landau, Edmund: "Vorlesungen über Zahlentheorie, Aus der Elementaren Zahlentheorie", S. Hirzel, Leipzig, 1927
- Jones G., Jones M.: "Elementary Number Theory (Undergraduate Series)", Springer, 1998