The integers \(a,b\) are called co-prime (or relatively prime), if their greates common divisor i\(\gcd(a,b)=1\), i.e. if \(1\) is the only positive common divisor is equal $1$, i.e. $\gcd(a,b)=1.$
Coprimality is a relation "$\perp$" defined on the set of integers $\perp\subseteq\mathbb Z\times\mathbb Z$ by \[a\perp b:\Leftrightarrow\gcd(a,b)=1.\]
Algorithms: 1
Corollaries: 2
Definitions: 3 4 5 6 7 8
Examples: 9
Lemmas: 10 11
Proofs: 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
Propositions: 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
Sections: 53
Solutions: 54
Theorems: 55 56 57