Proof
(related to Proposition: Congruences and Division with Quotient and Remainder)
"$\Rightarrow$"
- Let $a=q_am+r_a$ and $b=q_bm+r_b$ in the division with quotient and remainder, with $0\le r_a < m$ and $0\le r_b < m.$
- We can subtract both equations and get $a-b=(q_a-q_b)m.$
- It follows $m\mid (a-b).$
- This means, by definition, $a\equiv b(m)$ (i.e. $a$ is congruent to $b$ modulo $m$).
"$\Leftarrow$"
- Let $a\equiv b(m)$ and $a=q_am+r_a$ with $0\le r_a < m.$
- Since $m\mid(a-b)$, there is an integer $q$ with $b=a+qm.$
- This means that $b= q_am+r_a+qm=(q_a+q)m+r_a=q_bm+r_a$
- It follows, that any division with quotient and remainder of $b$ results in the same remainder $r_a.$
Altogether, it follows $a\equiv b(m)\Longleftrightarrow r_a=r_b.$
∎
Thank you to the contributors under CC BY-SA 4.0!
- Github:
-
References
Bibliography
- Landau, Edmund: "Vorlesungen über Zahlentheorie, Aus der Elementaren Zahlentheorie", S. Hirzel, Leipzig, 1927
- Jones G., Jones M.: "Elementary Number Theory (Undergraduate Series)", Springer, 1998