Definition: Congruent, Residue
Let $m > 0$ be a positive integer $a$ is called congruent to $b$ (or $a$ is called a residue of $b$) modulo $m$, written $$a\equiv b \mod m$$
or shorter
$$a\equiv b (m),$$
if $m\mid a-b,$ i.e. if $m$ is a divisor of the difference $a-b.$
Table of Contents
Explanations: 1
- Proposition: Congruence Classes
- Proposition: Congruences and Division with Quotient and Remainder
- Proposition: Connection between Quotient, Remainder, Modulo and Floor Function
- Lemma: Coprimality and Congruence Classes
- Proposition: Multiplication of Congruences with a Positive Factor
- Proposition: Congruence Modulo a Divisor
- Definition: Modulo Operation for Real Numbers
Mentioned in:
Definitions: 1 2 3
Explanations: 4
Lemmas: 5
Problems: 6 7
Proofs: 8 9 10 11 12 13 14 15 16 17 18 19 20
Propositions: 21 22 23 24 25
Sections: 26
Solutions: 27 28
Theorems: 29 30 31
Thank you to the contributors under CC BY-SA 4.0!
- Github:
-
References
Bibliography
- Landau, Edmund: "Vorlesungen über Zahlentheorie, Aus der Elementaren Zahlentheorie", S. Hirzel, Leipzig, 1927
- Jones G., Jones M.: "Elementary Number Theory (Undergraduate Series)", Springer, 1998