◀ ▲ ▶Branches / Number-theory / Proposition: Creation of Complete Residue Systems From Others
Proposition: Creation of Complete Residue Systems From Others
Let $m > 0$ be a positive integer and let $n\perp m$ be co-prime. If $C=\{a_1,\ldots,a_m\}$ is a complete residue system modulo $m$, then $nC:=\{na_1,\ldots,na_m\}$ is also a complete residue system modulo $m.$
Example
We can choose $n\cdot 0,n\cdot 1,\ldots, n\cdot(m-1)$ for any $n$ with $\gcd(n,m)=1$ as a complete residue system modulo $m.$
Table of Contents
Proofs: 1
Mentioned in:
Proofs: 1 2 3
Thank you to the contributors under CC BY-SA 4.0!
- Github:
-
References
Bibliography
- Landau, Edmund: "Vorlesungen über Zahlentheorie, Aus der Elementaren Zahlentheorie", S. Hirzel, Leipzig, 1927
- Jones G., Jones M.: "Elementary Number Theory (Undergraduate Series)", Springer, 1998