Proposition: Divisibility Laws
The following laws of divisibility hold in \(\mathbb Z\):
- \((1\mid n\wedge n\mid n\wedge n\mid 0)\quad\forall n\in\mathbb Z\).
- \((m\mid n \wedge n\mid m) \Rightarrow n=m\).
- \((m\mid n \wedge n\mid l) \Rightarrow m\mid l\).
- \(m\mid n\ \Rightarrow (m\mid (nr)\quad\forall r\in\mathbb Z)\).
- \((m\mid n \wedge m\mid l) \Rightarrow m\mid (n+l)\).
- \((m\mid n \wedge m\mid (n+l)) \Rightarrow m\mid l\).
- \(mr\mid nr \Rightarrow m\mid n\).
- \((m\mid n\wedge r\neq 0) \Rightarrow mr\mid nr\).
- \((m\mid n\wedge r\neq 0) \Rightarrow mr\mid nr\).
Table of Contents
Proofs: 1
Mentioned in:
Proofs: 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Propositions: 15 16 17 18
Thank you to the contributors under CC BY-SA 4.0!
- Github:
-
References
Bibliography
- Landau, Edmund: "Vorlesungen über Zahlentheorie, Aus der Elementaren Zahlentheorie", S. Hirzel, Leipzig, 1927