Proposition: Existence of Prime Divisors
Every integer \(n \neq\pm 1\) has at least one prime divisor, i.e. there is a \(p\in\mathbb P\) with \(p\mid n\).
Table of Contents
Proofs: 1 Corollaries: 1
Mentioned in:
Proofs: 1 2
Propositions: 3
Thank you to the contributors under CC BY-SA 4.0!

- Github:
-

References
Bibliography
- Landau, Edmund: "Vorlesungen über Zahlentheorie, Aus der Elementaren Zahlentheorie", S. Hirzel, Leipzig, 1927