Proposition: Existence of Prime Divisors

Every integer \(n \neq\pm 1\) has at least one prime divisor, i.e. there is a \(p\in\mathbb P\) with \(p\mid n\).

Proofs: 1 Corollaries: 1

Proofs: 1 2
Propositions: 3


Thank you to the contributors under CC BY-SA 4.0!

Github:
bookofproofs


References

Bibliography

  1. Landau, Edmund: "Vorlesungen ├╝ber Zahlentheorie, Aus der Elementaren Zahlentheorie", S. Hirzel, Leipzig, 1927