◀ ▲ ▶Branches / Number-theory / Corollary: Primality of the Smallest Non-Trivial Divisor
Corollary: Primality of the Smallest Non-Trivial Divisor
(related to Proposition: Existence of Prime Divisors)
Let \(n > 1\) be a natural number. Then the smallest non-trivial divisor \(d\mid n\) is a prime number.
Table of Contents
Proofs: 1
Mentioned in:
Proofs: 1
Thank you to the contributors under CC BY-SA 4.0!

- Github:
-

References
Bibliography
- Landau, Edmund: "Vorlesungen über Zahlentheorie, Aus der Elementaren Zahlentheorie", S. Hirzel, Leipzig, 1927