◀ ▲ ▶Branches / Number-theory / Proposition: Explicit Formula for the Euler Function
Proposition: Explicit Formula for the Euler Function
If $n=\prod_{k=1}^rp_1^{e_1}\cdots p_r^{e_1}$ is the factorization of the natural number $n\ge 1,$ then the Euler function $\phi(n)$ has the formula $$\phi(n)=n\prod_{k=1}^r\left(1-\frac{1}{p_k}\right)=\prod_{k=1}^r p_k^{e_k-1}({p_k}-1).$$
Table of Contents
Proofs: 1
Mentioned in:
Proofs: 1
Thank you to the contributors under CC BY-SA 4.0!
- Github:
-
References
Bibliography
- Landau, Edmund: "Vorlesungen über Zahlentheorie, Aus der Elementaren Zahlentheorie", S. Hirzel, Leipzig, 1927