Proposition: Finite Number of Divisors
If \(a \neq 0\) is an integer and $b$ its divisor \(b\mid a\), then \(|b|\le|a|\). In particular, each \(a\neq 0\) has only a finite number of divisors.
Table of Contents
Proofs: 1
Mentioned in:
Proofs: 1
Thank you to the contributors under CC BY-SA 4.0!

- Github:
-

References
Bibliography
- Landau, Edmund: "Vorlesungen über Zahlentheorie, Aus der Elementaren Zahlentheorie", S. Hirzel, Leipzig, 1927