Proposition: Finite Number of Divisors

If \(a \neq 0\) is an integer and $b$ its divisor \(b\mid a\), then \(|b|\le|a|\). In particular, each \(a\neq 0\) has only a finite number of divisors.

Proofs: 1

Proofs: 1


Thank you to the contributors under CC BY-SA 4.0!

Github:
bookofproofs


References

Bibliography

  1. Landau, Edmund: "Vorlesungen ├╝ber Zahlentheorie, Aus der Elementaren Zahlentheorie", S. Hirzel, Leipzig, 1927