◀ ▲ ▶Branches / Number-theory / Proposition: Sign of Divisors of Integers
Proposition: Sign of Divisors of Integers
Let \(a,b\in\mathbb Z\) and let \(a\) be a divisor of \(b\). From the divisibility \(a\mid b\) the following divisibility relations follow: \(a\mid -b~\), \(~-a\mid b~\),\(~-a\mid -b\) and \(|a|~\mid ~|b|\).
Table of Contents
Proofs: 1
Mentioned in:
Explanations: 1
Proofs: 2 3
Propositions: 4
Thank you to the contributors under CC BY-SA 4.0!

- Github:
-

References
Bibliography
- Landau, Edmund: "Vorlesungen über Zahlentheorie, Aus der Elementaren Zahlentheorie", S. Hirzel, Leipzig, 1927